Support vector machines with indefinite kernels
نویسندگان
چکیده
Training support vector machines (SVM) with indefinite kernels has recently attracted attention in the machine learning community. This is partly due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the Mercer condition is not satisfied, or the Mercer condition is difficult to verify. Previous work on training SVM with indefinite kernels has generally fallen into three categories: (1) positive semidefinite kernel approximation, (2) non-convex optimization, and (3) learning in Krein spaces. All approaches are not fully satisfactory. They have either introduced sources of inconsistency in handling training and test examples using kernel approximation, settled for approximate local minimum solutions using non-convex optimization, or produced nonsparse solutions. In this paper, we establish both theoretically and experimentally that the 1-norm SVM, proposed more than 10 years ago for embedded feature selection, is a better solution for extending SVM to indefinite kernels. More specifically, 1-norm SVM can be interpreted as a structural risk minimization method that seeks a decision boundary with large similarity margin in the original space. It uses a linear programming formulation that remains convex even if the kernel matrix is indefinite, and hence can always be solved quite efficiently. Also, it uses the indefinite similarity function (or distance) directly without any transformation, and, hence, it always treats both training and test examples consistently. Finally, it achieves the highest accuracy among all methods that train SVM with indefinite kernels with a statistically significant evidence while also retaining sparsity of the support vector set.
منابع مشابه
Subspace Learning in Krein Spaces: Complete Kernel Fisher Discriminant Analysis with Indefinite Kernels
Positive definite kernels, such as Gaussian Radial Basis Functions (GRBF), have been widely used in computer vision for designing feature extraction and classification algorithms. In many cases nonpositive definite (npd) kernels and non metric similarity/dissimilarity measures naturally arise (e.g., Hausdorff distance, Kullback Leibler Divergences and Compact Support (CS) Kernels). Hence, there...
متن کاملSubgradient-based Neural Network for Nonconvex Optimization Problems in Support Vector Machines with Indefinite Kernels
Support vector machines (SVMs) with positive semidefinite kernels yield convex quadratic programming problems. SVMs with indefinite kernels yield nonconvex quadratic programming problems. Most optimization methods for SVMs rely on the convexity of objective functions and are not efficient for solving such nonconvex problems. In this paper, we propose a subgradientbased neural network (SGNN) for...
متن کاملLearning SVM Classifiers with Indefinite Kernels
Recently, training support vector machines with indefinite kernels has attracted great attention in the machine learning community. In this paper, we tackle this problem by formulating a joint optimization model over SVM classifications and kernel principal component analysis. We first reformulate the kernel principal component analysis as a general kernel transformation framework, and then inc...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کامل